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The dynamic contact angle for a contact line moving over a solid surface with random 
sparse spots of roughness is determined theoretically in the limit of zero capillary 
number. The model exhibits many of the observed characteristics of moving contact 
lines on real rough surfaces, including contact-angle hysteresis and stick-slip. Several 
types of rough surface are considered, and a comparison is made between periodic 
and random rough surfaces. 

1. Introduction 
In  this paper we study problems involving moving contact lines. A ‘contact line’ 

is the line of intersection of two immiscible fluids with a solid boundary. Two 
ingredients of such problems have received much-attention in the past (Dussan V. 
1979). The first is why the contact line is able to move given that classical fluid 
mechanics (i.e. that modelled by the Naviedtokes equation, with a condition of 
no-slip a t  solid boundaries) forbids this possibility through a prediction of infinite 
stress at a moving contact line. The second concerns the dynamic contact angle, i.e. 
informally, the angle that a free surface makes with a solid surface a t  a moving 
contact line. It is always found experimentally (Dussan V. 1979) that the dynamic 
contact angle, considered as a function of the normal velocity of the contact line, is 
discontinuous at zero velocity. Many authors (including Huh & Mason 1977; 
Bayramli, van de Ven & Mason 1981 ; Cox 1983) have made steps towards explaining 
this phenomenon by considering surface roughness, although the rough surfaces 
considered have been far from realistic. All previous models of rough surfaces that 
have explained the discontinuity in the contact angle have either assumed that the 
surfaces are periodic (Huh & Mason 1977 ; Cox 1983), or one-dimensional and random 
(Bayramli et al. 1981). It will be shown in $3  that such surfaces exhibit many 
characteristics that are neither shared by two-dimensional random rough surfaces nor 
observed in practice. 

Sections 2 and 3 of this work comprise a discussion of ‘static’ and ‘dynamic’ 
contact angles (though, as explained in $3, these terms are not the most appropriate). 
In $2 we define the notion of ‘reversibility’ for a wetting process, which gives 
inequalities relating contact angles viewed at macroscopic and microscopic dimen- 
sions. In particular, these may be used to derive an upper bound on the area of a 
solid surface that can be wetted. 

Using the methods of suspension mechanics, a model of a two-dimensional random 
rough surface is presented in $3, and the advancing and receding contact angles on 
the surface are determined analytically in the limit where, macroscopically, surface- 
tension forces dominate over viscous forces (although on a microscopic scale these 
forces are comparable). 
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2. Static contact angles 
Although the term ‘static contact angle ’ is defined in many elementary textbooks, 

these definitions are often inadequate (Vennard & Street 1975). This is because the 
macroscopic contact angle that a fluid-fluid interface makes with a solid surface (i.e. 
that angle measured at a distance large compared with all microscopic lengthscales 
of the solid surface, but small compared with macroscopic length-scales) is, in general, 
a function of the history of the contact line. It depends on how the static configuration 
was set up as well as on the materials present. It is shown later in this section, and 
in detail in $3, that a cause for history-dependence is surface roughness. However, 
we begin by considering two situations in which the history of the contact line plays 
no role in determining the static contact angle. The first is when the solid surface 
is ‘perfectly flat’, i.e. flat on any lengthscale greater than the size of a molecule, as 
in a crystal plane, for example; and the second is when the wetting process on a 
rough surface is ‘reversible’ (in a sense to be defined later in $2.2). 

2.1. Static contact angle on a perfectly fEat surface 

In  the case of a perfectly flat surface the particular contact angle 8, is determined 
by insisting that the three phases (see figure 1) are in equilibrium under the action 
of intermolecular forces, for example, van der Waals or dispersion forces. White (1976) 
argued that although the fluid-fluid interface in the neighbourhood of the contact 
line will in general be curved, the limiting or apparent contact angle many 
dispersion-force lengthscales from the contact line must satisfy Young’s equation 

where u12, u13, uz3 are surface energy densities between the media denoted by the 
subscripts (see figure l),  also measured far from the contact line. In practice the energy 
densities on the solid surface are very difficult to determine, and are inferred from (2.1) 
using a measured 8,. However, for our purposes we require only that 8, exists and 
is well-defined. 

Note that (2.1) has real, and so physically meaningful, solutions for 8, if and only 
if 

1 g23-‘13 I < I u12 1, 

otherwise no static equilibrium is possible and spontaneous (or dynamic) wetting 
occurs. 

2.2. Static contact angle on a rough surface 

Throughout the rest of the paper we will use the term ‘rough surface’ to denote a 
surface that varies on a lengthscale that is large compared with the molecular scale 
but small compared with the macroscopic scale. On a small lengthscale the surface 
is taken to be a ‘perfectly flat’ continuum surface. In  this case, it  is meaningful to 
define a microscopic contact angle (i.e. the angle at which the free surface meets the 
tangent plane of the solid surface), which we will equate to the angle 8, described 
in $2.1. The mean or apparent macroscopic contact angle is, however, no longer 8,, 
and generally depends upon the history of the contact-line motion ($3.7). Although 
the above definition of a rough surface is an idealized model of real rough surfaces, 
it will be seen that it exhibits all the wetting characteristics of a real rough surface. 
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Solid 

FIGURE 1. Defining diagram for static configuration. 

Contact angle for reversible wetting processes 
A wetting process is called ‘reversible’ if the net energy expended in advancing 

and retracting the contact line over a given macroscopic area is zero. An often-quoted 
result (Wenzel 1949) for this special case of reversible wetting for the static contact 
angle on a macroscopically homogeneous rough surface is given by 

(2.2) 

where 8,+0, is the apparent contact angle (assuming it exists) measured many 
roughness lengthscales away from the contact line, and u is the ratio of true area to 
projected area of the rough surface. A proof of this result, which will lead to some 
useful generalizations, will now be given. Define n and m respectively as the unit 
normals to the solid and free surfaces (see figure 2). The free surface satisfies the well- 
known Young-Laplace equation, which in terms of m may be written 

yV*m = [m-o-m], (2.3) 

cos (e, + el) = u COS eo, 

where y is the surface tension of the free surface, which will generally be taken equal 
to unity, and [m*o.m] is the normal stress jump across it. For a reversible wetting 
process, the normal-stress jump must be solely due to pressure forces, because energy 
lost by viscous dissipation can never be recovered. Now on the macroscopic 
lengthscale the jump in pressure will cause a curvature of the surface which will be 
negligibly small on the microscopic lengthscale. Hence (2.3) becomes 

V-m = 0. (2.4) 

Consider the mesoscopic volume Y traced out by the free surface per unit width 
of the contact line as it wets a mesoscopic area d of the solid rough surface bounded 
above by a plane surface do (see figure 3). Note that Y is not necessarily single-valued 
in real space, as the motion of the free surface need not be monotonic. However, this 
does not violate any of the conditions for the divergence theorem, which applied to 

Jv V-mdY = 0 

implies that 

where no is the normal to do. The integrals over the initial and final parts of the free 
surface of Y cancel owing to homogeneity. If do is many roughness lengthscales 
above the solid surface, m restricted to do will be almost constant, m,, and therefore 
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FIGURE 2. Defining diagram for contact angle on a rough surface. 

FIGURE 3. Diagram defining volume Y .  

Fluid 2 / Fluid I 

FIGURE 4. Illustration of notation when droplets are left behind. 

the contact angle will also be almost constant, 8, + 8,. Using the boundary condition 
on the solid surface, n - m  = - cos Bo, (2.5) becomes 

d cos e, = do cos (e, + el), 
where d/d, = u, thus giving the required result. 

left behind: 
By a similar argument, we obtain a generalization which takes account of droplets 

cos (e, + 8,) = cw cos eo - cps, (2.6) 

where uw = dw/do, ufs = dfs/d,, with d, and dfs defined respectively as the 
wetted area of and the total free-surface area of the droplets left behind on d (see 
figure 4). 

Although (2.2) assumes reversible wetting, i t  can give a useful inequality for the 
irreversible case. If we suppose that the driving force for contact-line motion is 
provided solely by surface-tension forces many roughness lengths away from the 
contact line, then the effect of all the dissipative processes near the contact line (e.g. 
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viscous dissipation) can be included in (2.6) through a dissipation per unit area term, 
D, giving 

(2.7 1 

(2.8) 

~+cos(e ,+el)  = cw C 0 s e 0 - ~ , , .  

cos (e, + el) < cw CoS eo - cfs. 

From the second law of thermodynamics, D 2 0, which implies that 

For a system where the contact angles are such that they tend to resist the motion 
of the contact line, i.e. 8,+8,, 8,2 in, (2.8) can be used to derive an upper bound 
on the proportion of the solid surface wetted. In  this case (2.8) implies that 

Even if cPs and cos (0, + 0,) are not known, we may use I cos (0, + 0,) I < 1 and clS 3 0 
to obtain 

(2.10) 

Hence if the surface is sufficiently rough that cr > 1/1 cos 0, 1 then (2.10) implies that 
not all the surface can be wetted. 

Calculation of the apparent static contact angle given the position of the contact line 

The apparent static contact angle will depend on the history of the motion of the 
contact line only through its instantaneous position. In this subsection we assume 
that the instantaneous position is given, and we will determine it in $3. Suppose that 
a finite section r of the contact line is mesoscopically straight, and consider the 
portion of the free surface between r a n d  a line r,, in the free surface, mesoscopically 
parallel to r but many roughness lengths away (see figure 5). Then, from (2.4) we 
find an integral constraint corresponding to force balance on the free surface between 
r and r,, namely 

c 

(2.11) 

where r is a position vector and t, to are tangents to the free surface along r and ro 
and make right-angles with them in an outward direction. Take 2 as a unit vector 
perpendicular to ro and in the plane of the solid surface, then from (2.12) we find 

r 

This may be written as 

(2.12) 

where - denotes an average along r. 
If we use (2.12) to examine a corrugated surface, we find that (r/&)2 is 

independent of r, and equal to c C O S ~ , ,  provided that it crosses the corrugations, 
in agreement with (2.2). In particular, note that (r/fo) is independent of r on 
a perfectly flat surface. 
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FIQURE 5. Defining diagram 

In  $3  we consider surfaces that are flat except for an array of rough patches on 
the solid surface. Then, from (2.11), the contact angle is given by 

cos (e, + 0,) - cos 8, = - 2. { J f  tdr-Jf ,  t ’dP} ,  
r0 

where F is the projection of r onto the mean plane of the solid surface and t‘ is the 
corresponding value of t .  It is clear that  the only non-zero contributions to the 
integral are from the rough patches, and, defining n1 as the number of rough patches 
along the contact line per unit length of r,, we find 

cos(e,+~,)-cose, = --p. (2.13) 

where Ol is the average value of 

per rough patch on the contact line. The quantity Z corresponds to a stresslet in 
suspension problems, as it gives the microscopic contribution to the macroscopic 
contact angle from each rough patch. 

3. Dynamic contact angles 
I n  this section we calculate the dynamic contact angle (i.e. contact angle for a 

moving contact line) explicitly for a particular class of non-reversible wetting 
processes. This is also crucial for understanding the history-dependence of static 
contact angles as the history-dependence is simply a consequence of the past 
dynamics. For this reason, the traditional terms ‘static’ and ‘dynamic ’ are inap- 
propriate for describing contact angles, and are better replaced by ‘ history-indepen- 
dent’ (or ‘reversible ’) and ‘ history-dependent ’ (or ‘non-reversible ’). 

The first difficulty one encounters when attempting to  solve a problem with a 
moving contact line is that  the stress has a non-integrable singularity at the contact 
line due to  the no-slip boundary condition (Dussan V. 1979). In  this section we 
consider the case in which surface-tension forces may be assumed to dominate viscous 
forces, in spite of the ‘stress singularity ’. 

It is clear that we cannot insist on the no-slip boundary condition holding at  
distances of the order of molecular dimensions away from the contact line, because 
a t  these distances the fluid can no longer be considered as a continuum. So even 
though classically the viscous stress grows like 1/r a t  the contact line, it is clear that  
we must cut this off a t  least a t  a distance of molecular dimensions for a liquid (or 
the mean free path for a gas). This gives an upper bound for the maximum possible 
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value of the viscous stresses at the contact line as pU/S ,  where ,u is the viscosity of 
the more-viscous fluid, U is the normal component of velocity of the contact line along 
the solid surface and S is the molecular size. 

We shall assume that within 6 of the contact line the only other important forces 
are the van der Waals forces (or ‘surface-tension ’ forces) as was the case for the static 
contact angle ($2.1);  note that although the notion of surface tension is not strictly 
meaningful this close to the contact line, it is still useful for order-of-magnitude 
estimates (the van der Waals forces are of the same order as surface-tension forces 
on a surface with curvature of order l /S).  The relative importance of viscous and van 
der Waals forces is then given by the capillary number 43 = p U / y .  The capillary 
number for water is usually small in practice, and is, for example, of the order of 
for U = 1 cm 0, and can be made arbitrarily small for any fluid by decreasing U .  

The term ‘contact-angle hysteresis’ has been used by most authors in the field to 
mean that the graph of contact angle against velocity is discontinuous at  zero velocity 
(which is the macroscopic manifestation of a non-reversible wetting process) and not 
that the function (0, + 0,) ( U )  is multivalued. The phenomenon of contact-angle 
hysteresis has been considered by many authors, in particular Huh & Mason (1977), 
who analysed the spreading of a drop on several regular rough surfaces, having 
concentric, croas, hexagonal and radial grooves. However, the dynamic contact angles 
for such surfaces behave in a quite different manner from those for randomly rough 
surfaces, and are strong functions of the direction in which the contact line crosses 
the surface. Infinitesimal changes in this direction can result in large changes in the 
dynamic contact angle (see §3.8e), a feature not shared by real surfaces with 
microscopic roughness. Huh & Mason also attempted to calculate contact angles on 
random rough surfaces, but the results were in terms of height autocorrelations which 
were never evaluated in any specific case and this formalism is such that it can never 
give rise to contact-angle hysteresis. Later, Bayramli et al. (1981) considered 
theoretically the contact-line problem when a rod with macroscopic random axisym- 
metric grooves is vertically raised and lowered into a tank of fluid, but the contact 
angle is inevitably time-dependent, and only the time-averaged contact angle 
exhibits the characteristic hysteretic behaviour ; these results of Bayramli et al. have 
been verified experimentally (Bayramli & Mason 1981). 

3.1. A model for contact-angle hysteresis on an almost-flat surface 
In order to obtain steady contact-line motion theoretically, it is necessary to consider 
randomly rough surfaces that are statistically homogeneous in the direction of 
motion. For such a calculation to be mathematically tractable, some simplifying 
assumption is necessary, such as that of an ‘almost-flat’ surface. In  the past, 
‘almost-flat’ has been taken to mean ‘slowly varying’ (Huh & Mason 1977), and in 
the analysis of Huh & Mason, the expansion parameter (i.e. typical slope) is assumed 
to be small compared with the ratio of microscopic lengthscales, L to macroscopic 
lengthscales 9, O ( L / Y ) ,  which is zero in any ‘thermodynamic’ limit, and because 
of this assumption, they did not find hysteresis. We shall here take the term 
‘almost-flat’ to mean flat except for a small areal concentration c of rough patches, 
and i t  will be shown that even for the special case of slowly varying rough patches, 
contact-angle hysteresis is possible ! However, the characteristic surface slopes must 
be larger than those considered by Huh & Mason (1977), and, in fact, we suppose 
that we can neglect all terms O ( L / Y )  from the outset, i.e. all the rough patches are 
assumed to be small compared with macroscopic dimensions but large compared 
with molecules. 

We will show later that the irreversibility of the wetting process for our ‘almost-flat ’ 
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rough surface is due to a moving contact line ‘hanging on’ to  rough patches, thus 
tending to resist motion in any direction. For simplicity we shall assume that the 
distribution of rough patches on the solid surface is statistically homogeneous and 
isotropic and the rough patches themselves are all identical and similarly orientated. 
We also assume, for simplicity, that  the microscopic contact angle 0, = in, generalizing 
to an arbitrary 8, in Appendix B. 

3.2. Structure of calculation 

In what follows, we shall calculate 8, to  leading order in c .  However, this calculation 
is not a t  all as straight-forward as its suspension-mechanical analogue, namely the 
determination of the particle stress to leading order. This is principally because we 
are not able to consider each rough patch as if alone on the contact line, because the 
resulting perturbation to  the free surface is unbounded at infinite distances, as the 
fundamental solution to the linearized Young-Laplace equation is log ( l /p) ,  where 
p is the distance from the singularity. 

Problems of this kind, where a naive formulation fails because interactions between 
particles have either been ignored or summed incorrectly, are often encountered in 
suspension mechanics. The most closely related suspension mechanical problem is 
probably the determination of ‘the stress generated in a nondilute suspension of 
elongated particles by pure straining motion’ (Batchelor 1971), which is also 
governed by the Laplace equation, so again logarithmic divergences occur in a naive 
formulation. However, in the rod problem, the number density of particles is known 
a priori, which is cerbainly not the case for the contact-line problem, as the 
corresponding quantity, the number density of rough patches attached to the contact 
line, is initially an unknown function of c .  

In  order to calculate the dynamic contact angle, we first analyse the behaviour of 
the free surface near a given rough patch (‘inner problem ’), where each rough patch 
may be considered as a ‘point source of contact angle’ (equation (2.14)). It is in the 
‘outer problem’ that the ‘renormalization’ of the divergence of the naive one- 
rough-patch problem must take place. 

This calculation is primarily performed to demonstrate explicitly the effect of 
random surface roughness on the dynamic contact angle, with particular emphasis 
on the microscopic mechanisms leading to  contact-angle hysteresis. The problem is 
solved in two ways (to be described later) to illustrate how such problems may be 
posed more generally, as even this has caused some difficulty (Huh & Mason 1977; 
Bayramli et al. 1981) since the position of the contact line is not known a priori. 

Kinematics of the problem 

Take Cartesian coordinates such that the plane of the solid surface is coincident 
with the (x, 2)-plane, with the z-axis in the mean direction of motion of the contact 
line, as shown in figure 6. Now we may define the free surface by z = $(x, y), and (2.4), 
in terms of $(x, y) becomes 

V*{( 1 +;$J)’):j = O 3  

where V is the two-dimensional gradient operator. 
Fortunately, we only ever have to consider the full nonlinear equation in the 

neighbourhood of a rough patch (attached to the contact line), and far away from 
any individual rough patch we may linearize (3.1), giving 

V2#(x,y) = 0. (3.2) 
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0 0 0 Solid surface 

FIGURE 6. Diagram defining Cartesian axes. 

Since the areal concentration of rough patches on the solid surface is assumed small, 
so too will be the line concentration of rough patches along the contact line (i.e. the 
line concentration of points where the boundary condition at the solid surface is not 
a$/ay = 0). In this case, i t  is possible to define ‘inner’ and ‘outer’ regions, the inner 
region being the potentially nonlinear region near a rough patch having x, y varying 
on a lengthscale O(a) (where a is a characteristic dimension of a rough patch), and 
the outer (linear) region having x, y varying on the inter-rough-patch lengthscale L 
on the contact line. Since in the outer region each rough patch has arbitrarily small 
size because a/L+O, as c+O (in fact, as will be shown later, a / L  = O(c logc-l)), its 
effect as regards the outer solution can be replaced by a delta-function forcing of a$/ay 
at the boundary y = 0, i.e. aq5/ay cc S(x-xo)  in the neighbourhood of a rough patch 
at  x = xo. 

In  order to solve the outer problem and thus determine the dynamic contact angle, 
we must calculate both (a) which rough patches are attached to the contact line, and 
(b )  the strength a of the delta-function forcing representing each of these rough 
patches. These two calculations are coupled and depend on the past history of the 
contact line, with the strengths of the rough patches ultimately determined by 
matching with the inner solutions. We shall now discuss how contact-line history can 
be incorporated into the inner solution. 

3.3. The inner problem 
For simplicity we suppose that the contact-line history is such that it moves 
monotonically while attached to a specific rough patch. This assumption is not 
particularly restrictive, as we only require monotonicity of motion while the contact 
line moves a microscopic dimension, which we later show to be O(a log c-l). It is shown 
later that for a leading-order calculation of the dynamic contact angle, the inner 
solution is only important in determining a,,,, the maximum possible strength of 
a rough patch. 

To calculate amax we must in general solve (3.1) in the neighbourhood of a rough 
patch, which requires a boundary condition at infinity (or more precisely, the inner 
limit of the outer solution). The boundary condition at infinity may be determined 
to leading order by solving (3.2), taking our particular rough patch at the origin and 
assuming it has no close neighbours (for the probability of a neighbour within O(a) 
of the origin is zero at leading order). Thus we must solve 

= a6(x) +a  function zero near x = 0, 
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1 

with #(x, y) assumed known as p / L +  co, where p = (x2+y2)?, giving 

(3.3) #(z, y) = - log (x2 + y2) + a function regular near z = 0. 

Although #(x, y) cannot be completely determined at this stage, i t  is known to leading 
order near x = 0,  since it has a singularity there. 

I n  general amax must be calculated numerically,t by advancing the contact line, 
solving (3.1) for various values of a with 

a 
2n 

and increasing a until a point is reached where no solution exists. Generally this is 
a difficult calculation, because in the rough patch the boundary condition at the solid 
surface will not necessarily be a t  y = 0. 

To highlight the essential physical mechanisms and yet keep the mathematics to 
a minimum, we shall consider a particularly simple specific example of a rough patch 
(shown in figure 7), a flat-bottomed circular hollow of diameter 2a,  with flat sides 
making an angle x with the horizontal along the line of maximum slope, and of depth 
EX (E < 1). The side region can be taken to have width O ( E )  and to match smoothly 
with the fiat regions, giving an overall height profile on the solid surface which is 
smooth. This rough patch has the convenient property that when solving the inner 
problem, all boundary conditions a t  the solid surface can be applied at y = 0 to 
leading order in E / U .  

We may now consider what happens as the contact line moves across the hollow, 
starting at the left-hand edge, as shown in figure 7. The contact line cannot move 
over the O(s) edge region until at some point the free surface is tilted into the hollow 
by an amount x, and thus is unable to increase any further. The advancing contact 
line therefore stops at the leading edge of the hollow and gradually wraps itself round 
it. When a t  some point (the middle, in fact) the free surface first attempts to tilt more 
than x, the whole contact line peels off the hollow, and makes a catastrophic jump 
to a new equilibrium, which in the limit c+O will be shown to be a t  least O(a log c-l) 
beyond the hollow. 

It is clear then that such a rough patch has a non-zero value of amax for all E, even 

t However, see Appendix C for an analytic solution for a non-linear rough patch. 
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FIGUBE 8. Illustration of coordinates describing hollow. 

though within the hollow the area fraction of non-horizontal points can be made 
arbitrarily small by decreasing B .  Furthermore, amax is independent of B in the limit 
E + O .  Although it is relatively easy to calculate a,,, numerically for all values of 
x, it  is not particularly informative, and so we restrict calculation of amax to the limit 
of small x. 
Calculation of amax for small x 

In  this case we may use (3.2) everywhere. Suppose that the contact line adhered 
to the hollow for x E [ - b, b] (see figure 8) ,  then in this range $(x, 0) is known and 
equal to - (1 - x2):, where we have taken a = 1 for convenience; for consistency in 
using (3.2), however, we must approximate (1 -x2): by 1 -;x2+O(d). We write the 
boundary condition for &x, y) at y = 0 as 

y1 = If'"' forxE[--b,bI, 

a = s_bf(x) dx 

0 otherwise aY y-0 

where f(x) is a symmetric function, unknown at this stage, satisfying 

b 

for consistency with the boundary condition at infinity. Using (1/21~) log (x2  + y2) as 
a Green function, since it has the correct form at infinity, we find 

l b  
$(x,y) = -s f(q) log((x-q)2+y2)dq+const. 

2n -b 

which gives f(q)logIx-qldq+const 

for x E [ - b, b]. On differentiating with respect to x, this reduces to 

and is recognized as a Hilbert transform, which may be inverted to give 

f(x) = (b2-x2)1. 

To calculate a,,, we observe that the contact line will first break away from the 
hollow at the midpoint of the rear edge (i.e. at x = 0), and for this we require that 
f(0) = x. We thus determine, in dimensional form, 

a,,, = $ux2 (1 + O(x2)) .  (3.4) 
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3.4. Calculation of dynamic contact angle 
It is now possible to calculate the dynamic contact angle 0, + 8, by solving the outer 
problem assuming that the contact line has been moving monotonically in the 
z-direction sufficiently far (in fact this will be shown to be O(a logc-') for i t  to be 
possible to  neglect all starting transients). I n  the following calculation there are two 
number densities which must not be confused; the first is n,, already defined in 92 
as the number of rough patches per unit macroscopic width of the contact line, which 
is not known a priori, and the second is n2, which is defined as the area density of 
rough patches on the solid surface and is a given property of the solid surface equal 
to  c/A, .  The dynamic contact angle will be determined in two ways, the first of which 
is by calculating the number density n, of rough patches on the contact line and the 
average strength Z of a rough patch on the contact line, then applying (2.14), which 
reduces to  8, =-n, 5 (at leading order in c ,  and with 0, = iz). The second mechanism 
supposes that E, is the irreversible energy loss per rough patch due to  non-equilibrium 
jumps as the contact line breaks away from them (typically radiated by capillary 
waves damped by viscosity). Then the irreversible work done by a contact line moving 
over a mesoscopic area do is n2 E0 do. The work done by mesoscopic surface tension 
forces in excess of the reversible work over the same area, as given by (2.7) with the 
term D set to  equal n,E,, implies that  

n,E,  = B, cose,-~c,-cos(e,+e,). (3.5) 

This simplifies significantly in the case where gfs = 0 (i.e. no droplets are left behind), 
because then B, = (T = 1 + O ( c ) .  At leading order in c ,  since 8, will later be shown 
to be O(c log c - l ) ,  we may make the approximation a = 1, in which case (3.5) reduces 
to  

1 
sin 0, 0, = - n2 E, + O ( c ) .  

In  fact, even in the case where cCs =!= 0, we expect, in general, almost all the droplets 
to be left behind on the rough patches and not to be found on the flat parts of the 
solid surface, where the contact line moves unimpeded. This then implies that 
rfS = O(c)  and B, = 1 + O ( c ) ,  so (3.6) is still valid. However, a rigorous calculation 
of ufs would involve a determination of the rate a t  which a droplet can form, which 
requires consideration of van der Waals and viscous forces and is mathematically 
equivalent to a coalescence problem. This would introduce another non-dimensional 
parameter into the calculation which could be taken as the ratio of the timescale for 
droplet formation to a characteristic time for the contact line to  move a microscopic 
distance. However, this additional complication will not be considered here, and we 
restrict ourselves to rough patches that do not induce droplet formation. 

3.5. Brief description of renormalization 
To calculate the irreversible energy loss E,, it is useful to  consider $ = $(I OB) - $(I 0), 
where $(loB) and $(lo) are the values of $ just after and before a rough patch a t  
x = 0 breaks for a particular realization of the rough surface. Naively, one might have 
thought one could have calculated the energy lost due to one rough patch leaving 
the contact line by considering $-$(lo), but unfortunately this does not work 
because direct interactions between rough patches through the field equation are so 
weak that ($) (10) does not tend to  (q5) as p tends to  infinity, where ( ) denotes 
an ensemble average. However, since one rough patch breaking could (and in practice 
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often does) cause others to break, the energy released when $J changes from $ ( I  0) to 
#(I OB) does not average to Eo. A detailed analysis of the process by which a contact 
line moves from one quasi-equilibrium position to another is given in Appendix A. 

When a particular rough patch breaks, the free surface moves forwards, increasing 
the load on neighbouring rough patches; but when any of them have a > amax they 
will also break and increase the load on their neighbours, and so on, until a state is 
reached where all rough patches are below their breaking points. Rough patches below 
breaking point behave very much like ‘springs ’, increasing their strength to balance 
any increase in the driving force of the contact line; we may therefore suppose, in 
a self-consistent way, that in the far field they will respond linearly to small 
perturbations in the applied load. This far-field approximation to the response of 
rough patches everywhere renormalises the logarithmic divergence at infinity. 

3.6. Calculation of $ 
Define $, as $in the case in which n additional rough patches break before the steady 
state is achieved. Then to leading order ($,) satisfies 

V2<$,> = 0 

where g is the ‘spring constant’ for the rough patches in the far field, which is 
undetermined at present, and the xi are the positions of the broken rough patches. 
The ‘spring’ is linear, to leading order in c, since many rough patches take part in 
the far field, and as (3.7) is itself linear, to this order of approximation $, is simply 
the superposition of n+ 1 copies of the solution of the yk0 problem. Solving for ($o) 
in terms of n. we find 

I ,  

“ D l  
($o> (2 ,  y) = % lo r+k e-kg cos kxdk. 

It is now possible to determine g by self-consistency by noting that to leading order 
all the motion of the free surface occurs in the discontinuous jumps due to breaking. 
Since we are assuming that the solid surface is statistically homogeneous, we must 
have 

(3.9) 

i.e. on average the number of rough patches leaving the contact line exactly balances 
the number joining it. On substituting for ($.,) from (3.8), we find 

where g ( 5 )  = -Ci(E) cos[-si(g) sin5 and Ci and si are defined in Abramowitz & 
Stegun (1968, p. 232). It is possible to show analytically that jrm g ( 5 )  d( = x ,  a result 
that can also be obtained by considering directly (3.7) in the case n = 0, and noting 
that j:m (a($o)/ay) Ig-odx = 0 for ($o) to be well-behaved at infinity. Thus we 
have (3.10) 7 = nzamax. 

Substituting the above value of g in (3.8) thus determines ($o) (x, y) completely, and 
as will be seen later this is all we need know about the random variable $ ( x ,  y) for 
a leading-order calculation of the dynamic contact angle. 
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3.7. Determination of el 
We are now in a position to calculate the dynamic contact angle by either of the two 
methods mentioned previously. 

Method 1. Stress balance 
We need t o  find a relation between 7 and n,, which can be obtained by considering 

the $o problem in the case in which i t  is given that there is a rough patch that does 
not break a t  x = 2,. In  this case, we have 

v2 ( $ 0 )  (I 2 1 )  = 0 ,  

where Aal is the increase in strength of the rough patch a t  xl, due to  the breaking 
of the one at 0. This has solution 

Aa1 
( $ 0 )  ( X I % )  = ($o)(x)--<$o)(x-~l)~ 

amax 

Define = ($,J (0) ,  where we have included the inner solution in ( $o> to remove 
the infinity at the origin in the outer problem. Since the rough patch at x1 has not 
broken, the contact line there will not have moved, to leading order (in fact, i t  would 
only have moved a distance 0 (amaX/log c-l), so ($o) (xl I xl) = 0, which gives 

Since all other rough patches on the contact line will behave in the same way as the 
one at xl, 7 is given by 

n 1 4  
7 =  ( $ 0 )  (4 ’ 

which implies that  n l = - .  q@rnax (3.11) 

Note that  we have also shown that the assumption that 7 is constant (i.e. that rough 
patches in the far field behave as linear ‘springs’) is self-consistent. $max may be 
determined from (3.8) by observing that 

amax 

(3.12) 

as I 7x I + O ,  and that the inner solution will in general take over from this when 
x = O(a).  $max must therefore be given, to  leading order, by 

and since, for a general rough patch that will adhere to the contact line, a,,, Ab 
and a are all of the same order of magnitude, this becomes 

(3.13) 
1 

$ma, N - amax log;, 
7t 

also valid for the circular hollow if log x-’ 4 log c-I 
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We are now able to check our assumption that the lengthscale 7-l of the 
disturbance due to one rough patch breaking is very much greater than the typical 
distance n;l between rough patches adhered to the contact line, since 

7-l 1 
7 - log-. 
721 C 

A large number of rough patches therefore take part in the renormalization of the 
$,, problem, and so we would expect the contribution from each one to be small, 
O(l/logc-'). In this case, each rough patch will contribute to the renormalization of 
many other rough patches before it will break itself. It can be shown that even the 
nearest neighbour to a breaking rough patch does not, on average, have to bear a 
significantly greater load than many other neighbouring rough patches. This is partly 
due to the fact that the number density n, (z 10) tends to zero as I z I tends to zero, 
a result that can be verified by considering two close rough patches and noting that 
n2 (10) = n2 (by assumption), giving the following result: 

1 

nl(x10)=n2-  amax x [1--] (3.14) 

for a + x + 7-l. 
Since a large number of rough patches are responsible for renormalizing the 

logarithmic divergence in the $o problem, the at change almost continuously (in fact, 
small jumps of O [ a , , , / l ~ g c - ~ ] )  from a, = 0 to at = amax, and because (3.8) is linear 
in the a,, we have that, to leading order, the average value of at for rough patches 
attached to the contact line is simply +am,,. From (2.13) we can thus determine the 
dynamic part of the contact angle, viz 

1 
loglog- log - 

log - log - 
el = +amaxnl = [%]clog; [ 1 + 0  ( C , '.".))I, 1 (3.15) 

C C 

which in the particular case of a circular hollow with x + 1 reduces to 

1 
loglog- log- 

log - 
(3.16) 

This demonstrates that the degree of contact-angle hysteresis can be a strong function 
of the magnitude of gradients on the solid surface, in this case depending on the fourth 
power, a result which might not have been anticipated. Equation (3.15) is applied 
to various types of rough surface in $3.8. 

Method 2. Energy method 

We now present the second method of calculating 8, +el, which is included because 
it may be of theoretical interest, as i t  might be a better starting point for improved 
theories. It is not possible to calculate the energy in the two states #(I 0) and $(I OB) 
separately without considering the full macroscopic picture. However, the difference 
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in energy of these two states can be determined since it is perfectly well-defined in 
terms of the microscopic description, given by 

m m  

E = i J, J-, (v$(10))2-(V$(IOB))2dxdy. 
Removing $(I OB) in favour of $, we find 

m m  
E = -; J, (V$)"+v$~V$(~O)dxdy. (3.17) 

Contrary to its superficial appearance, this quantity is positive, and converges in spite 
of the occurrence of $(I 0) as $ is sufficiently well-behaved at infinity. 

It is not possible to evaluate the integral in (3.17) directly as we only know ($) 
and ($) (I 0) in detail, although, as previously mentioned, many rough patches take 
part in each renormalization. At leading order in c ,  $ = ($), except close to each 
individual rough patch, where there is a weak singularity, in the limit c - t O  ofstrength 
(amax/logc-1)2. This implies that the contributions of the singularities to  the final 
integral may be neglected at  leading order, and so i t  is possible to substitute ($) 
for ~ in (3.17). If we consider the case where 1~ additional rough patches break (3.17) 
becomes 

+2V($n)(Ixl, ..., xn).V(~)(IO,xl , . . . ,x,)drdy. (3.18) 

Since this expression is nonlinear it is not obviously true that (E,)  = (n+ l)-l (E,), 
although this is indeed the case, since to leading order 

n 

($n) (I ~ 1 3  .-., "n) = Z ( $ 0 )  ( X - - X ~ )  

and 

and it is possible to  show by integrating by parts that all the cross-terms appearing 
in (3.18) are zero, and thus we only need to  consider (3.18) for thc case n = 0, as in 
method 1. This result is physically plausible: for consider the thought experiment 
where the rough patches break off one at a time (the other rough patches behaving 
as 'springs'), which on average would clearly release energy (n  + 1 )  (E,)  and achieve 
the same final state as the real physical processes. Sinve the energy released is simply 
a function of initial and final positions (i.e. independent of path), the real physical 
processes will release precisely the same amount of energy as in the above thought 
experiment. 

From (3.18), on substituting (3.8) wc find 

and combining this with (3.6). we find 
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where we have identified E, with E,, which gives precisely the same result for 8, as 
in the first method. We may generalise this result to an arbitrary 8, using the 
argument presented in Appendix B, from which we find 

It is likely that this second approach would be better suited for extending to 
higher-order terms in c ,  especially for surfaces that trap droplets of the receding fluid. 
It should be emphasized, however, that any such calculation would be extremely 
difficult and the inner problem would have to be solved numerically. 

3.8. Types of rough surface 
We are now in a position to make some statements about the sorts of roughness that 
contribute most to contact-angle hysteresis, making use of the analysis of earlier parts 
of this section. A generalization to an arbitrary 8, is described in Appendix B. 

(a)  Scratched surface 
Consider an otherwise perfectly flat surface with thin scratches of length 21 and 

constant radius of curvature a (see figure 9), and, for simplicity, suppose that the 
slope into the scratch is again a constant x < 1. As the contact line approaches a 
particular scratch, either the relative orientation is such that the contact line first 
meets one of the scratch ends, in which case a,,, will be at most of the same order 
as the radius of curvature at the end, and so may be taken to be zero for a thin 
scratch, or the scratch curves away and so the contact line will adhere to it (see 
figure 9). If the contact line is able to run over the middle of the scratch before it has 
reached the ends, the condition for breaking is the same as for the circular hollow 
already considered in $3.3, so that 

but if the contact line makes contact with the end nearest to the point of initial 
contact before it has run over the middle, it will then peel off from that end, in which 
case a,,, is given by 

a,,, = [ 1 + o (')2], 

where b is the distance along the scratch between the point of initial contact and the 
endpoint. These results can be combined to give 

(3 .20)  

where q is the angle between the direction of motion of the contact line (considered 
on mesoscopic dimensions) and the inward normal to the arc a t  its centre (see 
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FIGIURE 9. Contact line approaching a scratch at two different orientations. 

Contact line 

f 

Contact line 

FIGURE 10. Sketch illustrating the angle q. 

figure 10). From this we note that a thin straight scratch (i.e. a = CO, 1 finite) gives a 
negligible contribution to contact-angle hysteresis, having a t  most the same order 
of effect as a circular hollow of radius equal to the width of the scratch. As it is not 
meaningful to consider the concentration of vanishingly thin scratches, we must use 
an alternative form of (3.15), namely 

1 +o loglog- (3.21) 

or this may be cast into the old form of (3.15) by defining c = A, n2, where A, = xa2. 
This shows that the degree of contact-angle hysteresis is not simply a function of 

the area concentration of non-horizontal points, but rather the length of rough 
patches to which the contact line can adhere. One consequence of this is that given 
an approximate surface profile (e.g. from an electron microscope), it would be very 
difficult to determine O,, as fine-scale scratches not resolved could play a crucial role. 

( b )  Humped surface 

We have seen in the previous part of this section that very small indentations on 
the solid surface can have a large effect on the dynamic contact angle. In this 
subsection we will briefly consider how the wetting characteristic change when the 
surface is inverted, so that hollows are replaced by humps. 

Consider the inverse of the circular hollow of $3.3, which we can think of as a low 
hump. When the contact line first meets the back of the hump i t  will have no difficulty 
in going up onto it, since it is downward slopes that retard the motion of a contact 
line, and when the contact line reaches the front of the hump where there are 
downward slopes of length O ( E )  these have little effect since they behave very much 

1 1 7  O 2n: n2[log- a k a x  122 ( a k a x  n2 
&ax 8, = sin20 - 
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like the scratches of §3.8(a) in the case when they curve away from the direction of 
motion. This demonstrates that the wetting characteristics of a surface are not 
necessarily similar when the surface is inverted. 

However, there are humps that do have a large effect, for example ones that contain 
hollows, or at least a ridge that curves away from the oncoming contact line, so 
behaving very much like a curved scratch, and humps with heights of the same order 
as the width (as seen from the direction of motion of the contact line), for example 
a hemispherical hump, which is considered in Appendix C. 

( c )  Surface with anisotropic distribution of rough patches 
We have considered one way in which a rough surface can be anisotropic, namely 

that the rough patches themselves are anisotropic, but this can also occur through 
an anisotropy in the distribution of the rough patches. Although we do not intend 
to give a complete discussion of this here, we may give a simple illustration of how 
it may occur by considering a disconnected rough patch. In particular, consider a 
rough patch which consists of two identical rough patches of typical dimension a and 
distance d apart, and for simplicity suppose that a 4 d < 7-l. In this case we may 
define an effective amax for the pair, agfx, which is found to be given by 

(3.22) 
( amax otherwise, 

where q is the angle between the direction of motion of the contact line and the line 
joining the two rough patches. This demonstrates how one rough patch may be 
shielded by another if the two are sufficiently close together, and suitably orientated 
so that when the contact line breaks off the first, it is almost ready to break off the 
second. Examining the particular cases q = 0 and q = in, we find that is 
respectively twice and half the value that would be obtained if the pairs of rough 
patches were completely unconstrained, as is quadratic in agfx and n2 must be 
halved as the number density of pairs is half that for singletons. 

( d )  Greasy surface 
Consider next a surface with patches having a different microscopic contact angle 

8,+8,, e.g. a surface with local contaminant, hence the term ‘greasy patches’. We 
shall first analyse these greasy patches for the case B0 = in, generalizing later, as the 
dependence on 8,, of the dynamic contact angle for these patches is quite different 
from that of the rough patches considered previously. For simplicity, we assume that 
I 8, I 4 1, as little additional insight would be obtained from the general case. 

If 8, > 0 the contact line will, at  first, hang onto the rearmost edge of a patch, 
as in the case of a circular hollow, but instead of breaking suddenly, will move until 
it reaches a point where the length of contact line in contact with the patch is 
maximal, then any farther movement will cause i t  to break off altogether. It is 
possible to have discontinuous motion while in contact with the patch, as shown in 
figure 11. Let the maximum patch dimension perpendicular to the direction of motion 
be amax, then using the linearized form of (3.1), we have 

amax = 8, amax. 

Now consider 8, < 0, which could be achieved by reversing the direction of motion, 
as this reverses the sense of angles; then the patches are wet more readily than the 
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Point of 
breaking 

FIGURE 11 .  Contact line moving over a greasy patch. 

uncontaminated surface, so the free surface, instead of hanging back, will be pulled 
forwards. However, since i t  cannot anticipate the patch before touching it, the time 
the contact line is in contact with the patch is a factor O(l/logc-') shorter than for 
the case 8, > 0, and so to the same order a,,, = 0. 

To generalize our expression for amax to arbitrary B0 in this case, we simply replace 
OP by 8,/sin2 B0, giving 

0Pamax for 8, > 0, 

o fore ,<o ,  

a,,, = [ sin2eo 

which implies that 
1 
C 

(3.23) 

So in this case 0, is proportional to  l/sin2 B,, as compared with l/sina 0, for the case 
of a circular hollow. 

( e )  Periodic rough surface 
Consider a square array of rough patches with the contact line parallel to one of 

the principal axes as shown in figure 12, and take the microscopic contact angle equal 
to in. We can again define inner and outer regions as in $3.2, and calculate $, which 
is now completely deterministic. The outer problem in this case is 

v2g5 = 0, 

where the distance between adjacent rough patches is taken as unity. The above 
equations may be solved by taking Fourier transforms with respect to x, giving 

a coth 7cy 
cos2 7cx + sin2 7cx coth2 7~y ' 

g 5 h  Y) = 

If the contact line is a t  the point of breaking, a = a,,,, and (2.14) then implies 
that 

0, = n1 amax 
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0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

FIQURE 12. Illustration of contact line attached to a square array. 

since in this case n1 = nf,. After the contact line breaks off one row of rough patches, 
it will attach itself to the next, with a just less than amax by an amount 0 [ l / n ,  91 .  

Periodic rough surfaces exhibit many characteristics that are neither shared by 
random surfaces nor observed in practice. For example, 8, is a strong function of the 
angle of approach to the square array, for if we turn the contact line by a small angle 
q < ci log c-l (see figure 13), 

el =:[-]ciogc a&ax 1 
2nA0 (3.24) 

This is derived by an argument similar to that for the random array, with unbroken 
rough patches behaving like ‘springs’. The factor t in (3.24) is due to 

E - 4 n a x  -log2 1 
O -  2% 

rather than log-. 
2x c 

The directions where 8, a ci can be thought of as ‘resonant’ directions, where 
energy released per rough patch when a particular rough patch breaks is not related 
to the energy that would be released if that rough patch were suddenly removed and 
all others behaved as ‘springs’. When the distance along the contact line between 
critical rough patches (a > amax) is large compared with the renormalization distance 
for the one-rough-patch problem, the energy released is, to leading order in c ,  the same 
as for the random case with the same value of n,, so 

It should be noted that the strange ‘resonant’ behaviour of periodic rough surfaces 
depends on all the rough patches being perfectly placed and identical, and for this 
reason we would not expect it to be realised in nature for surfaces with microscopic 
roughness. It is only mentioned here because regular rough surfaces have been 
studied extensively by other authors, in particular Huh & Mason (1977), in whose 
case the surface consisted of macroscopically long grooves rather than arrays. 
However, the overall features would be expected to be very similar. 

a c logc-’. 

3.9. Summary and conclusion 

In this section we have calculated the dynamic contact angle on a rough surface in 
the limit of zero C. However, this does not imply that viscous dissipation has been 
totally neglected, for if so we would inevitably have reproduced the results of Wenzel 
(1949). The moving-contact-line problem on a rough surface can be considered as a 
singular perturbation problem in C, so even though the mesoscopic capillary number 
is zero, the dissipative effect of viscosity is important. In the energy method for 
calculating the dynamic contact angle (Q 3.7), the net loss due to dissipative processes 
at the contact line is equated to the work done in excess of the reversible work by 
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0 0 0 0 0 0 0 0 0 

I amax 
0 0 0 ;  0 0 0 0  

0 0 0 ~ 0 0 0 0 0 0  

I 
I 

FIGURE 13. Contact line almost parallel to principal axis. 

mesoscopic surface-tension forces. However, as is shown, the net effect of all the 
dissipative mechanisms a t  the contact line could be calculated by considering the 
energy difference between two quasisteady positions before and after the contact line 
makes a ‘discontinuous jump’. So in effect the mesoscopic flow field does not see a 
moving contact line, but rather a stationary contact line that from time to  time 
disappears, reappearing an instant later a t  a slightly advanced position. The net effect 
of fluid motion in the neighbourhood of the contact line during this non-equilibrium 
jump is accounted for in our definition of the dynamic contact angle several roughness 
lengths away from the contact line. The above observations have recently been used 
to  analyse a contact line moving a t  non-zero C (Jansons 1985). 

It might be thought that  the random forcing of a contact line by a random array 
of rough patches on a solid surface is similar to  the random thermal fluctuations which 
are important in suspension mechanics. However, one distinguishing feature is that  
thermal fluctuations (Brownian motion) have zero autocorrelations on the time-scales 
of interest, whereas a contact line encountering an area with roughness slightly 
greater than average for the solid surface tends to remain there for a time which is 
an  increasing function of the strength of the fluctuation; so large fluctuations persist. 
This can be seen, if the rougher area is large enough for the contact angle inside it 
to  depend on the local roughness concentration, by comparing this area with a greasy 
patch of $3.8 ( d )  ; the contact angle inside the patch is greater than outside it because 
of the increased roughness, implying that the contact line lingers in areas of greater 
roughness. 

With hindsight, i t  is possible to see that the reason we were able to calculate the 
dynamic contact angle for the dilute array of rough patches, while attempts to  
determine dynamic contact angles failed for random slowly varying rough surfaces 
(i.e. surfaces with heights much less than a single characteristic wave length), is that 
in our analysis the history-dependence of the contact angle came in in two ways. Each 
rough patch has a local history corresponding to the ‘inner’ problem, in which we 
know that the contact line must approach from a particular direction and must apply 
a known force amax to pass over the rough patch. This is then used as an input into 
the ‘outer’ problem, where we may include the statistics of the solid surface and then 
solve for the dynamic contact angle assuming that the contact line has moved forward 
sufficiently far to be in statistical equilibrium. However, a necessary assumption for 
this is that  the chain reaction caused by one rough patch breaking always terminates 
with the contact line moving over an area small compared with macroscopic 
dimensions (see Appendix A);  other details of the chain reaction have no importance 
to  the order of approximation of this section. For a slowly varying rough surface, 
the behaviour ofthe contact line when i t  reaches a particular point depends crucially 
on the surrounding roughness, so i t  is not possible to  incorporate the effect of the 
direction of motion by a local analysis. For if a slowly varying assumption were 
sufficient to calculate dynamic contact angles, we would expect that supposing that 
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Type of surface/process 4 
Reversible (2.2) 

rough patches (amax = 0) (3.4) O(4 
Random; amax =+ 0 (3.7) O(c logc-1) 
Periodic ; ‘non-resonant ’ (3.8e) O(c 10gc-1) 
Periodic ; ‘ resonant ’ (3.8e) O(& 

Random ; no adherence to 

TABLE 1. Dependence of 8, on surface type, with section references. 

the rough patches themselves were slowly varying would make it easier to calculate 
higher-order terms in concentration, which is not, in fact, the case. We conclude by 
presenting in table 1 a summary of the possible dependences of 8, on c for the rough 
surfaces considered in $$2 and 3. 

Appendix A. The chain reaction 
In  this Appendix we investigate the ‘chain reaction ’ caused by one rough patch 

breaking, and consider the important physical mechanisms necessary for the contact 
line to find a new static equilibrium. We show, in particular, that the boundary 
conditions at infinity before and after breaking are equal in the thermodynamic limit 
a/64+O with c fixed, which is an essential assumption for the analysis of $3.6. This 
may be achieved by first considering the chain reaction in the absence of coupling 
with the boundary condition at infinity for a surface with slight inhomogeneities in 
the direction of motion, and then secondly including these interactions by considering 
the stability of the contact line at macroscopic dimensions, illustrating the important 
physical processes by means of a particular example. 

Mathematical description of the chain reaction 
We divide the chain reaction up into well-defined stages by means of a simple thought 
experiment, defining the initial configuration, when a given rough patch is about to 
break as generation 0 ; then generation 1 is defined as the equilibrium state that would 
be obtained if the given rough patch were allowed to break and every other rough 
patch on the contact line had amax = 00. Similarly define generation 2 as the next 
equilibrium state obtained by allowing every rough patch with a > amax to break, 
while all other rough patches on the contact line behave like ‘springs ’ with amax = co , 
including any new rough patches that may have joined it (see $3.6). Repeating this 
process, we may define generations 3,4 and so on. 

Now, for every rough patch breaking in generation n -  1, a large number, O(1og c - l ) ,  
of neighbouring rough patches must increase their strength by O(amax/log c - l ) .  So 
the probability distribution at leading order in c for the number of rough patches at 
breaking point in generation n will be given by a Poisson process that, for a system 
that is statistically homogeneous in the z-direction, has mean equal to the number 
of rough patches that were at breaking point in generation n - 1. In addition to this, 
we note that at leading order in c the total excess strength Xat>mmaxat, in every 
generation is quantized (a multiple of amax) provided that Xat>umax 1 -g log c- l ,  as for 
these rough patches 

at = amax (1 + O(l0g c - l ) - l ) .  
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We may define the state vector of generation n as pn = (p,", ...,pa", ...), where p r  
is the probability that the number of rough patches a t  breaking point in generation 
n is equal to i. Then pn+' is related to pn by the Markov process 

pn+l = a-pn,  (A 1) 

where a typical component atj of the matrix a is given by aij = e-jji/i! 
( i , j  = 0, 1 ,2 ,  . . .), with the convention 0" = 1. Thejth column of the matrix a is simply 
the probability distribution of a Poisson process with mean j, and (A 1) states that 
the actual number of rough patches above critical in generation n gives the expected 
number of rough patches above critical in the next generation, a consequence of 
statistical homogeneity. 

In  order to  show that the chain reaction stops, we need to  show that, with 
probability 1, in a finite number of generations we reach a state where there are no 
rough patches a t  breaking point, and so the contact line stops moving. It is possible, 
after a little algebra, taking initial conditionsp" = (0, 1 ,  0,  0, . . .), to derive a recurrence 
relation for p t ,  namely 

(A 2) 

a result that  may be proved by mathematical induction on n .  From this we deduce 
that limn+m p t  = 1 ,  noting that p," is an increasing function of n and that p," = 1 is 
a fixed point of (A 2). 

Although in any particular realization the contact line will stop after moving a finite 
distance, the average distance moved as calculated from (A 1) is infinite. This is to 
be expected, since the position of the contact line is ultimately determined by the 
macroscopic physics, e.g. a circular drop spreading on a plane surface, due to a volume 
source at its centre, continually adjusts itself to  accommodate an increasing volume 
of fluid. This could not be so if the motion on the microscopic scale were not coupled 
in some way to that on the macroscopic scale. 

To understand this coupling physically, consider the situation after a small amount 
of volume has been added to  the drop. This slightly changes the boundary condition 
at infinity for the microscopic problem, and could result in a t  least one rough patch 
breaking. Often the contact line will stop after moving over a microscopic area, but 
occasionally a chain reaction will occur, which, if unchecked, would result in the 
contact line moving over a macroscopic area. However, in practice for such a chain 
reaction, the boundary condition at infinity would be relaxed sufficiently for all the 
rough patches to be below breaking point by the contact line moving over a 
mesoscopic area, and i t  is this coupling between the microscopic and macroscopic 
physics which must be included for a detailed understanding of the stopping 
mechanism. To include this coupling with the boundary condition a t  infinity in (A 1 )  
i t  is helpful to consider a system that is slightly inhomogeneous in the direction of 
motion, for this gives the possibility of an infinite chain reaction. 

p;+l = e-(I-P,R), 

Systems inhomogeneous i n  the zrdirection 

Consider a system in which the roughness varies on a lengthscale Y Z  in the z-direction, 
and assume that $max/L3'z 4 1. For such a system we may calculate the dynamic 
contact angle by making a quasihomogeneous approximation, as the inhomogeneities 
can be ignored in the $o problem. Since the roughness is characterized by 
(ahax/A0) c log c-l, we can consider a rough surface in which c only is a function of 
z ;  this significantly simplifies the chain-reaction problem as the excess strength a t  
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each generation is still quantized as before. In spite of the last assumption, the 
resulting macroscopic physics is the same as in the general case. If we temporarily 
ignore the coupling between microscopic and macroscopic, only considering the 
statistical inhomogeneities associated with the roughness on the solid surface, i t  is 
possible to show that the transition matrix a for the chain reaction is given by 

which holds for A x 1. We may interpret A as the expected number of rough patches 
to reach breaking point in generation n per rough patch in generation n- 1. 

Equation (A 2) becomes 

(A 4) pt+l  = e-A(l-PP) 

from which we can show that the expected number of rough patches to break in a 
single chain reaction is equal to 

-A;,  for A, < 0, 
00 otherwise, 

where A, = h - 1, and the probability q ( A )  of an infinite chain reaction is given by 

0 forh, < 0, 
, otherwise. 

To include the coupling between microscopic and macroscopic, we note that on the 
microscopic scale this coupling will manifest itself by slightly changing the expected 
number of rough patches joining the contact line, and so, to leading order, will affect 
only the chain reaction and not the @,, problem. Since to leading order, the amount 
the boundary condition at infinity is changed is proportional to the volume of fluid 
displaced (or the area of solid surface covered) due to discontinuous jumps of the 
contact line, the coupling may be included in A. 

Consider again a circular drop with a source at its centre and suppose that the 
contact angle is approximately &r. Since we have assumed that 43 4 1, the timescale 
for volume change is very much greater than that for microscopic adjustments. We 
may calculate the contribution to A from the macroscopic constraints by another 
thought experiment. Consider the effect of a radial roughness down-gradient on the 
stability of the drop. If the gradient is steep enough the resulting advancing dynamic 
contact angle will decrease sufficiently fast for the drop to be unstable to small 
radially symmetric disturbances. The critical gradient of the dynamic contact angle 
is given by 

where Y is the volume of the drop, which is derived by considering the drop in the 
thermodynamiclimit a / Y k  + 0 with cfixed. Since to leading order the two contributions 
to A, are independent, we can use (A 6) to calculate the contribution to A, from the 
macroscopic constraints, because a t  the critical point in our thought experiment, A, 
must be exactly zero, as this describes the point of marginal stability in the 
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microscopic description. We thus find that for a general concentration gradient, A, 
is given by 

(A 7) 
Q) a log c-1 a log c-1 A, = a,,, ,p J-, g2(t)ds[ a 

z 

and from (A 6) we deduce that in our particular example 

a iogc-l 1 377- -4 
az Icr i t  = 8;[16x] ’ 

We can now return to  the case of a homogeneous rough surface, still retaining the 
term including the microscopic effect of the macroscopic constraints by setting 
a logc-l/az equal to  zero in (A 7). From this we can deduce that the expected number 
of rough patches to  break in one chain reaction is 

log amax c-l ‘“I 
which we can immediately see to be of the same order as the number of rough patches 
on the whole contact line, although the area covered in a typical chain reaction is 
of mesoscopic proportions, as it is O(aVY-; log c-l). 

It should be pointed out, however, that in the above argument we have neglected 
inhomogeneities along the contact line. These certainly play an important role, as 
it is these inhomogeneities that  ensure that the drop in our thought experiment 
remains approximately circular, although they are not important in explaining the 
gross features of the chain reaction. We have therefore shown that we were correct 
in assuming that the chain reaction stops and that the $, problem was indeed 
appropriate for calculating the dynamic contact angle. 

It is interesting to  notice that A, = 0 resembles a ‘phase-transition’ point, with the 
probability of an infinite chain reaction (one of macroscopic extent) being zero for 
A, < 0, and increasing linearly for A, > 0. The macroscopic manifestation of this is 
that for a system with A, < 0 the contact-line motion is driven from infinity and i t  
is possible to  have motion for arbitrarily small C, as the discontinuous jumps made 
by the contact line are only microscopic ; but for a system with A, > 0 there is a finite 
probability of a chain reaction leading to a macroscopic movement of the contact 
line. So in the thermodynamic limit the contact-line position is unstable and the 
resulting movement of the contact line is dominated by the viscous singularity rather 
than the radiation of capillary waves. 

The chain reactions described in this Appendix give a semiquantitative description 
of the well-known phenomenon of stick-slip (Dussan V. 1979) and explain why the 
observed jumps in contact line motion for contact lines moving with small C are very 
much greater than a typical roughness dimension. 

Appendix B. Dynamic contact angle for a general 8, 
Consider the generalization of the expressions for the dynamic contact angle 

obtained previously for 0, = in to an arbitrary 8,, in the case where we may use the 
linearized form of (3.1) everywhere. To generalize to  arbitrary 8, in the case where 
the inner problem is nonlinear, we must resolve the inner problem, calculating u,,, 
for the appropriate value of 8, ; however, the subsequent argument follows through 
just as in the fully linearized case. 
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Writing q5 = q50+$1, where q5, = tan(8,-$) y, which would be the value of q5 for 
a completely flat surface, (3.1) reduces to 

V2$ = 0 

to leading order in $l. 
The inner problem to calculate the value of am,, is essentially the same as before ; 

the only difference is in the boundary condition for q51 at y = 0. 
Consider again the circular hollow of $3.3 (assuming x < 1 for linearity). The 

condition for breaking for B0 = in, and indeed in general, is that at the back of the 
rough patch the free surface makes an angle x with its unperturbed value and so allows 
the contact line to run over the rough patch. This gives the new condition for 
breaking, that at  the midpoint of the back of the hollow 

which in terms of $1 is 

X 

Note that this analysis is not uniformly valid in O,, and actually breaks down when 
8, = 0, x .  These particular limits are extremely difficult to deal with analytically, as 
we cannot apply boundary conditions at the solid surface at y = 0. Thus x/sin2 8, 
replaces x in the analysis of $3.3, and hence the expression for sax becomes 
a,,, = xaxe/2 sin4 6,. 

The intricate calculation of aq51/i3y as y + O ,  including the renormalization and 
chain-reaction problems, is unchanged, as the field equation is the same and each 
rough patch is still described to leading order in terms of the single parameter a,,,, 
which implies that 

Evaluating this for the circular hollow, we find 

1 
8 sinstlo c 

el = ~ x4 clog-. 

Appendix C. An analytic solution for a nonlinear rough patch 
Consider a solid surface with a random array of hemispherical humps of radius a, 

and a microscopic contact angle equal to +x. If we examine the sequence of events 
as the contact line moves across a particular hump, we find that, on touching it,  the 
contact line will immediately jump to its equator to leading order in c, and then will 
gradually move round towards the back, increasing a until it  is maximized (see 
figure 14). 

Since 8, = !gr, the free surface is axisymmetric, with axis in the direction of 2, in 
the neighbourhood of any particular hump, and so in effect we need to calculate the 
maximum force that the free surface can exert on a sphere. If q is the angle between 
2 and the radius of the sphere to the contact line (see figure 14), the force exerted 
by the free surface is given by 

2 

F(q) = 2xa sinq cosq. 

FLY 1.u 
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FIGURE 14. Plan view showing sequence of contact-line positions as i t  moves over the hump. 

This force is maximized at q = in, so Fmax = an. Since amax is simply the force on 
a hemisphere, we find 

which on substitution into (3.15) gives 

amax = $a, (C 1 )  

6, = i c l o g l [ l + O (  log logc-l log c-1 )]. 
C 

Clearly this analysis may be extended to all humps that are axisymmetric about 2. 
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